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The unsteady velocity field generated by an underexpanded jet has been investigated
using stereoscopic particle image velocimetry (PIV). A 4:1 aspect ratio converging–
diverging rectangular nozzle designed to operate at a fully expanded condition of
M = 1.44 was used. The nozzle was operated at off-design conditions to generate
imperfectly expanded jets with intense screech tones. Phase-locked PIV measurements
show the spatial and temporal evolution of the three-dimensional jet with high
fidelity. In addition to the globally averaged mean and turbulence velocity field data,
the phase-averaged data for the velocity and vorticity fields were also obtained. The
turbulence quantities were resolved into contributions from the periodic and random
motions. The deformation of the periodic spanwise structures results in the formation
of strong streamwise vortices that appear to govern the mixing of the jet. It is shown
that the presence of coherent vorticity of significant strength, in addition to the shock
cell strength, is largely responsible for determining the screech intensity.

1. Introduction
The primary motivation for the examination of the flow field of a screeching

rectangular jet is to provide some guidance towards developing control methods for
high-speed jet noise suppression and enhanced mixing for combustion applications.
A promising approach for the diffusion of high convective Mach number free shear
flows uses the efficient energy transfer between the mean and the turbulent velocity
fields caused by global instabilities (Strykowski, Krothapalli & Jendoubi 1996). One
such phenomenon, known as ‘screech’ (Powell 1953) exemplifies the dramatic effect
of a self-sustained feedback loop in the global flow response, as shown in figure 1.
Unlike isolated shear layers, compressible jets are unstable over a wide range of
disturbances for all Mach numbers (Berman & Ffowcs Williams 1970). Consequently,
any feedback loop is liable to set up a resonance phenomenon that leads to a
self-sustained oscillatory condition common to non-ideally expanded supersonic jets.
Powell described the screech phenomenon as being generated by disturbances in
the shear layer, which convect downstream and come into contact with a shock
cell boundary. This interaction, particularly at the end of a shock cell, results in
the generation of intense sound. The sound propagates upstream in the ambient
medium, interacts with the incipient shear layer at the nozzle exit and produces a new
downstream travelling disturbance that continues the feedback cycle. It is assumed
that the sound waves moving in the upstream direction adjacent to the jet are of
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Figure 1. Schlieren picture of a screeching rectangular jet issuing from a converging nozzle.
Nozzle aspect ratio of 10, nozzle pressure ratio of 3.5.

sufficient strength to affect the stability of the shear layer surrounding the shock cells.
Upon reaching the nozzle exit, the acoustic wave gives rise to a localized pressure
force, which excites the shear layer. This initial small disturbance usually forms
regular undulations, which take on a slightly wavy form (Poldervaart, Wijnands &
Bronkhorst 1974). The rapid growth of these undulations results into eddies, which
are clearly depicted in figure 1. The instability waves that are part of this process
are of convective type and thus have a negligible upstream influence. As a result,
the jet could be excited at non-screech frequencies if it is driven by an upstream
disturbance of sufficient strength. If an efficient energy transfer mechanism between
the undisturbed shear layer and the oscillatory disturbance, in the region covering the
first few instability wavelengths, is devised, the resulting motion of the jet could be
as violent as that observed for a screeching jet (Poldervaart 1976). Indeed, using flow-
induced cavity resonance at the nozzle exit to excite the shear layer, Yu & Schadow
(1994) were able to show that the initial shear-layer growth rate can be increased by
a factor of nearly three at a high convective Mach number (Mc = Uj/(a1 +a2); where
Uj is the mean velocity of the jet and a1 and a2 are the speed of sound in the jet and
the ambient medium respectively) of 1.4.

Since the pioneering work of Powell, many theoretical and experimental investiga-
tions have been carried out to elucidate the features of screech tones (see the review
article by Raman 1998).

It is commonly believed that the eddies seen in flow-visualization pictures are a
manifestation of the shear-layer instability process, and correspond to the nonlinear
stage of the growth in which the infinitesimal waves grow and distort to form vortices.
The linking of the instability process to the formation of large-scale coherent structures
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has been firmly put in place by Morris, Giridharan & Lilley (1990). Modelling the
large-scale coherent structures as a superposition of instability waves, they predicted
the experimentally observed properties of two-dimensional compressible shear layers
without the inclusion of any empirical constants. The rapidly growing instability
waves, representing the flapping mode in a rectangular jet, evolve into the intense
coherent eddies, as seen in figure 1. An accurate prediction of the screech frequency
can be made given the knowledge of the shock cell structure mean flow characteristics
coupled with the tools of stability analysis (Tam 1988). However, the prediction of
screech tone amplitude remains elusive and the results presented in this paper may
provide some guidance in this direction.

A marked feature of the picture taken at a given phase within a screech cycle and
shown in figure 1 is the simultaneous presence of a nascent vortical structure and the
birth of a cylindrical acoustic wave at the end of the third shock cell (top shear layer).
Based on similar flow-visualization images and other related work, it was hypothesized
(Krothapalli, Baganoff & Hsia 1983) that the screech tone amplitude is related to
the strength of the coherent vorticity in the vortical structure and shock strength
at the end of the shock cell. This suggestion was primarily based on qualitative
observations without supporting measurements. Recent numerical investigations by
Manning & Lele (2000) have revealed the dependence of the sound-field intensity on
the shear-layer disturbance amplitude and the shock strength. The model involves the
two-dimensional interaction of shear-layer vortices with an isolated region of the jet
shock cell structure. Their results clearly indicate that the radiated acoustic pressure
amplitude is closely related to the instability wave amplitude. Having established that
the instability wave amplitude is closely tied to the evolution of large-scale vortices,
a strong case may then be made that their strength largely determines the amplitude
of the radiated sound. Hence, a description of the large-scale structure dynamics
constitutes a significant part of the present paper. It is probably fair to say that
not much has been learned directly about the dynamics of these structures from
flow-visualization studies.

The variation of the screech tone amplitude with nozzle pressure ratio typically
assumes a parabolic shape (Krothapalli et al. 1986; Krothapalli & Strykowski 1996).
Using a shallow water table to simulate the sound radiation from a screeching
rectangular jet, Brocher & Makhsud (1997) have shown that the static pressure
gradient at the end of the third shock cell follows a parabolic variation with a
parameter equivalent to the jet Mach number similar to the screech amplitude trends
shown by Krothapalli et al. (1986). Hence, they established a strong link between
the screech tone intensity and the static pressure gradient at the location of screech
sound generation. Given that intense local concentrations of vorticity are often
accompanied by high values of pressure gradients (Prandtl 1952), it is consistent
to assume that higher-strength vortical structures are present at maximum screech
intensity. Therefore, a study the role of the vortical structures in determining the
screech tone amplitude deserves attention.

The paper is organized as follows. In § 2, the experimental procedures, which
also include a brief description of the phase-locked stereoscopic PIV system set-
up, are explained. Section 3.1 addresses the sound field characteristics. The global
mean flow is described in § 3.2 which addresses the growth rates of the jet in major
and minor axes planes. The properties of the periodic spanwise large-scale vortical
structures and the development of the streamwise structures are discussed in § 3.3.
Finally, § 3.4 presents the characteristics of coherent and chaotic turbulence intensity
fields.
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2. Apparatus, instrumentation and procedures
The experiments were conducted in the blowdown compressed-air facility of the

Fluid Mechanics Research Laboratory at the Florida State University. A high-
displacement reciprocating air compressor drives the facility; it is capable of supplying
air at a maximum storage pressure of 14 MPa. Large storage tanks provide a total
capacity of 10 m3. After leaving the storage tanks, the air can be heated by passing
through an array of resistive tank heaters having a maximum power output of 450 kW
and capable of achieving stagnation temperatures up to 700 K. The jet with an exit
Mach number, Mj = 1.69, used in this study can be run continuously for about 30 min.

The blowdown facility was fitted with a rectangular nozzle having an exit aspect
ratio of 4:1. The dimensions of the nozzle in the exit plane measured, height, h =
10 mm, and width, w = 40 mm. The contour of the short dimension of the nozzle
was generated using the method of characteristics for a design Mach number of 1.44.
The walls of the long dimension of the nozzle were kept parallel downstream of the
throat. The circular dimension of the connecting pipe (diameter = 76 mm) upstream
of the throat was blended to facilitate a smooth transition to the rectangular cross-
section. To avoid problems of condensation associated with the humid Florida air,
the jet was operated at a stagnation temperature of 335 K. The plenum pressure and
temperature can be maintained steady by two pneumatic valves and electrical heaters
with automatic controllers. During the present experiments, the pressure was kept at
its nominal value within a variation of ± 2 kPa. The total temperature was kept at
the nominal value of 336 ± 2 K with a relative error of 0.6%. The resulting error in
the velocity, for Mj =1.69, is ± 3 m s−1 (less than 1%).

The mean exit velocity profile with laminar boundary layers was a top-hat as the jet
was exhausted into a quiet surrounding at ambient conditions. The jet exit Reynolds
number based on the nozzle exit height and the mean exit velocity is 4.3 × 105. A
Cartesian coordinate system (X, Y , Z) was chosen with its origin located at the centre
of the nozzle exit plane and with the X-axis oriented along the centreline of the jet,
Y - and Z-axes are oriented along the short and long dimensions, respectively (see
figure 4). The measurements are confined to the central plane (the (X, Y)-plane) of
the jet containing the small dimension of the nozzle and (Y, Z)-planes at selected
locations downstream of the nozzle exit.

Submicron (∼ 0.3 µm) oil droplets generated using a modified Wright nebulizer
provided the necessary seeding for the jet, whereas the ambient air was seeded with
smoke particles (1 ∼ 5 µm in diameter) produced by a Rosco fog generator. Seeded air
output is mixed with the main air-supply stream in the inlet pipe at 1.25 m upstream
of the nozzle. Although the particles in the jet core were exposed to relatively weak
compression and expansion of the flow within the shock cells, very little particle lag
was noticed in the measurements, as it will be shown in § 3. The larger particles in
the ambient medium that are entrained into the jet remain confined mostly to the
subsonic region of the flow and do not pose a lag problem.

2.1. Particle image velocimetry (PIV)

Non-intrusive measurements of the velocity field were made using stereoscopic particle
image velocimetry (PIV). A detailed discussion of the application of the stereoscopic
PIV technique to supersonic jets is given in Alkislar, Lourenco & Krothapalli (2000).

The Kodak ES1.0 CCD cameras used to capture the images have a resolution of
1008(H ) × 1018(V ) pixels with size of 9 × 9 µm, and a maximum frame rate of 30 Hz.
The camera was equipped with a 58.37 mm focal length lens that was specifically
designed for the wavelength of the laser light. A microcomputer, with two Pentium II
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CPUs, controlled the camera, and was capable of acquiring up to 128 image pairs at
the maximum camera framing rate. To illuminate the flow field, a frequency doubled
Nd-Yag laser with dual cavity (Spectra-Physics PIV-400) was used. The time, �t

between the two laser pulses was kept between 1 and 1.5 µs.
In order to obtain velocity data with high spatial resolution, a novel-processing

algorithm was employed (Lourenco & Krothapalli 2000). Velocity information is
obtained from a pair of single exposed PIV images by subdividing the images into
subimages (interrogation area) and quantifying the average spatial shift of particles
from one image to the other by statistical correlation techniques. To eliminate the
errors due to the finite interrogation size, e.g. loss of pairing, image truncation, velocity
and seeding gradient in the interrogation region, a masking method is enabled. In
this method, the particles in the interrogation area are detected by a threshold that
is found from the average gradient for each region being analysed. The mask in the
method is a map of the interrogation area filled with ones at the locations where the
particle image is detected and zeros otherwise. Zeros are also assigned to the parti-
cle locations at the edges of the interrogation area. This operation results in the
elimination of the background noise due to the reflections and parasite illumination,
and the effect of particle truncation, also increasing the signal level in the correlation
peak. The application of the mask eliminates the bias effect seen in the standard fast
Fourier transform (FFT) correlation and results in a significant reduction of scatter.

In addition, to eliminate the errors due to image pairing loss originating from
correlating two fixed regions, a scheme is used in which the maximum number of
pairings between the two regions is sought by correlating the smaller interrogation
window with a larger window. To accommodate the size difference in the FFT, the
smaller region is padded with zeros to form the same size as the larger region. This
adaptive window technique reduces the scatter of the data even further.

A high-resolution feature is implemented to account for the velocity and seed
density gradient effects that occur in practical PIV recordings. During the mask
operation, the particle detection feature also generates a list of the centre of mass
position, area and form factor of each particle image. Then, a particle image pairing
procedure is applied based on the group displacement. In this procedure, a direct
spatial domain correlation is performed to find the displacement for the maximum
correlation. Subpixel resolution is achieved by means of a Gaussian interpolation
procedure. The measurement position equal to the half-distance between the centres
of mass of corresponding images is assigned to each of the measured displacements
as displacement position with a second-order evaluation. The error associated with
each measurement is minimized by using a least-squares fitting algorithm. In order to
maintain the second-order accuracy a second-order polynomial was used as,

u = ax2 + bx + cy2 + d y + e xy + f . (1)

The sizes of the interrogation regions are dynamically adapted during the computation
to ensure that there are at least ten values in the displacement-positions list. The
marked advantage of this approach is that the field is described at any point with
second-order accuracy, including the derivatives that are found by differentiating
the previous equation. The error minimization approach maintains the order of the
accuracy and provides a means for an accurate evaluation of the field derivatives.
Although an unstructured grid is used for calculating the velocity, for ease of
presentation, the velocity field is usually presented at regular intervals. Detailed
discussion of the processing technique and comparison with standard PIV algorithms
can be found in Lourenco & Krothapalli (2000).
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Figure 2. The PIV set-up.

Considering all the effects, an error of 0.03 pixels is conservatively estimated in
the displacement calculation. Time delay between the two pulses is chosen to give
maximum displacement in the flow field of not less than 6 pixels, giving a relative
error of 0.5%. For the jet velocity of 495 m s−1 it corresponds to ± 2.5 m s−1.

Because the PIV measurements are restricted to a limited region, to cover the entire
jet, it was necessary to divide it into several measurement zones. These zones may
have different sizes to cover the regions of interest. In addition, they overlap to ensure
the coverage of the whole flow field and proper match. At the edges of the zones, data
can be more erroneous because of unnoticed focusing variations and/or magnification
limitations. In order to minimize these effects, a weighted averaging method is used to
combine the data at the overlapping regions of the different zones. At the beginning of
the overlapping region, the first zone has the full weighting of one and the second zone
starts with a value of zero weighting at the edge. While moving towards the end of
the overlap, the weighting in the first zone decreases linearly to zero and at the second
zone it increases to one. The same procedure is repeated for every overlapping region.
This procedure minimizes the zone-edge problems and mismatches by decreasing the
weighting in those regions. In this fashion, a smooth variation of the velocity contours
is obtained after the combination of four regions, each with a measurement area of
65 mm in height and 105 mm in length. The overlapping region covers 30 mm in
length.

2.1.1. PIV set-up

As shown in the figure 2, two cameras are positioned at an angle with respect to the
measurement plane to obtain the stereo-view. In this arrangement, the Scheimpflug
condition (for which measurement plane, lens plane and image planes coincide along
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Figure 3. Different modes of viewing for stereoscopic imaging with the Scheimpflug
condition. (a) Same side imaging, (b) opposite side imaging.

a line, as illustrated with circles at the intersection of three planes in figure 3) ensures
that uniform focus is obtained in the image plane. In practice, this condition is
obtained by rotating the camera body with respect to the lens plane. In order to
attain the precise focusing of the particles in the laser sheet, two motors with remote
control were assembled with the camera and lens as pictured. Special attention is
given to make sure that the camera sensor is positioned on the axis of rotation and its
midpoint is aligned with the optical axis of the lens so that the rotation of the camera
will not cause a translation in the field of view. The angle between the axes of the
two camera views is set at approximately 90◦, which gives the maximum accuracy in
the three-dimensional reconstruction (Alkislar 2001). A calibration procedure ensures
that the views from each camera are free from perspective effects, and it provides
the necessary correspondence between the coordinate positions of each camera view
so that the three-dimensional velocity field is accurately reconstructed. Two different
types of imaging modes, as shown in figure 3, are used, based on the flow field
of interest. The same side imaging mode is particularly used for cross-plane (Y, Z)
measurements. For a more detailed discussion on stereoscopic PIV, see Alkislar (2001).

2.2. Pressure measurements

Total and static pressure surveys were performed along the centreline of the jet and
at several downstream locations in the central minor axis plane. Data obtained from
these two different probes were combined to calculate the Mach number distribution.
The accurate positioning of the probes in the flow field was accomplished by a
three-axis traverse mechanism. Each axis has its own motion controller unit made
by Compumotor, and controlled by a digital computer. The computer is a Dell 386
personal computer with an analogue data acquisition board. The absolute position
of the traverse can be stored and maintained remotely to within 2 µm. This is also
the minimum step size of the system.

For the total and static pressure measurements, two different probes were used.
The total and static probe output were connected via 3.175 mm diameter nylon tube
to a Validyne model DP-15 pressure transducer with operating ranges of 1 MPa and
70 KPa, respectively. Output voltage of the transducers was adjusted to give 10 V
at the maximum pressure. The voltage signal was digitized and acquired at the rate
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of 512 samples per second. Then the average of the 512 samples was written to an
ASCII data file along with the three coordinate positions of the probe.

The static probe was manufactured according to the design of Pinckney (1975)
and is described in detail in Wishart (1995). Considerable attention was given to
ensure that the probes were oriented parallel to the nozzle centreline and this was
accomplished with the help of a 10 mW He-Ne continuous wave laser.

2.3. Acoustic measurements

Acoustic measurements were performed to identify the nature of screech tone at
off-design conditions. In this study, the Bruel & Kjaer (B & K) acoustic measurement
system was used. The system comprises of a quarter-inch condenser microphone
(model 4136), a pre-amplifier (model 2633) and a Nexus conditioning amplifier with
an onboard bandpass filter. The signal was filtered in the frequency range between
20 Hz and 100 kHz. Each data set comprises of 320 k sample points acquired with
a sampling frequency of 250 kHz. This acquisition frequency allows us to compute
frequency spectra up to 100 kHz without violating the Nyquist criteria. Standard FFT
methods were used to obtain the power spectra and sound pressure level (re: 20 µPa).
A rectangular filtering window was used in the FFT calculations. The spectra have
a resolution of 60 Hz. In the decibel range of interest in this investigation, which is
larger than 120 dB, the maximum calculated error considering only the microphone
characteristics is within ± 1 dB. Several repetitions of the same experiment on the
same set-up also yielded a maximum of ± 1 dB error.

2.4. Phase locking technique

The time evolution of the coherent motion was obtained using the phase-averaging
technique. Following the work of Reynolds & Hussain (1972), and Cantwell & Coles
(1983), any flow variable, q(x, t), can be decomposed into two components as shown
in equation (2).

q(x, t) = 〈q(x, τ )〉 + q ′′(x, t), (2)

where, 〈 〉 is the average at a constant phase (which is also commonly used as the
phase average), q ′′(x, t) is the random component and τ is the phase delay within
the period of one screech cycle. Then, the average at a constant phase is given by the
following expression.

〈q(x, τ )〉 = q̄(x) + q̃(x, τ ), (3)

where q̄ is the global mean and q̃ is the periodic mean component.
In the present experiment, the average at a constant phase was obtained using the

following equation.

〈q(x, τ )〉m =
1

Nm

Nm∑
i=1

q(x, ti + τm), (4)

where Nm is the number of samples acquired at phase τm from the reference time
ti . The reference time is obtained from the signal of screech sound measured by a
microphone located in the vicinity of the nozzle exit. Preliminary PIV investigations
suggested that N = 30 samples were sufficient to achieve statistical convergence of
the velocity field. A maximum mean value error of 5% of the maximum velocity
with 90% confidence level was considered as a converged velocity field at a constant
phase. The global mean is obtained using the following expression:

q̄(x) =
1

M

M∑
m=1

〈q(x, τ )〉m. (5)
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Figure 4. The phase locking set-up.

The global mean values were found from the mean of the phase-averaged quantities
as shown in (5) where M is the number of phases. In this study, M = 16 was used,
therefore the screech cycle was sampled at 22.5◦ intervals. The phase average velocity
field was obtained using 35 samples, while the global mean velocity field was obtained
using 560 samples.

Once the global mean is calculated, the fluctuating component can be obtained
from (3). The second-order correlations are calculated using the following equations,

〈q ′′r ′′〉m = 〈qr〉m − 〈q〉m〈r〉m, (6)

q̃ r̃ = 〈q〉〈r〉 − q̄ r̄, (7)

qr = q̄ r̄ + q̃ r̃ + q ′′r ′′, (8)

and the total Reynolds stresses (conventional stresses obtained by classical Reynolds
averaging) are simply the addition of the global fluctuating and global random
components as,

q ′r ′ = q̃ r̃ + 〈q ′′r ′′〉 =
1

M

M∑
m=1

(q̃ r̃ + 〈q ′′r ′′〉)m. (9)

2.4.1. Phase locking set-up

A diagram of the set-up for the phase locked PIV measurements is shown in
figure 4. As shown in the figure, a microphone appropriately placed near the nozzle
exit provides the screech sound signal. After conditioning with a bandpass filter, the
screech signal is used as an input to a frequency-tracking and pulse-generating unit.
This custom-made unit is capable of tracking signals with frequencies between 400 Hz
and 12 kHz. It generates the pulse trigger train that has the same phase as that of the
input signal. Next, it divides the trigger signal up to 10 000 times so it corresponds
to the frequency of the laser and the camera. Finally, it delays the divided signal up
to 0.1 s with 0.1 µs increments, in order to generate the necessary phase pulse for the
synchronized camera and laser strobe. All time delays are realized with an accuracy
of ± 1 ns.
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Figure 5. Comparison of (a) axial velocity and (b) transverse velocity contours
for —, phase 90◦ and ---, reflected phase 270◦.

2.4.2. Validation of phase-locked measurements

In order to increase the resolution in time, the phase-locked measurements were
made in half of the screeching cycle and the reflection of this data is used for the
remaining half of the cycle. To validate this idea, PIV data acquired with 180◦ phase
delay are compared. A typical result is shown in figure 5(a), where the normalized
axial velocity field in phase 90◦ is drawn in solid lines and it is compared to the data
of reflected phase 270◦ in dashed lines. An excellent match is obtained between the
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Figure 6. Near-field spectrum of a microphone signal. Measurement radius, R/h = 25;
nozzle inlet angle, χ = 90◦. —, Mj = 1.68; ---, 1.44.

two sets of data in all the velocity ranges. A similar comparison is made in figure 5(b)
for the normalized transverse velocity data for which the velocity range is six times
lower. Each velocity field corresponding to one phase is an average of about 35
samples.

3. Results and discussion
3.1. Near-field sound characteristics

A typical near-field spectrum of the microphone signal is shown in figure 6. The
microphone was positioned at a distance of R = 25 h (y/h = 25) normal to the jet
axis (nozzle inlet angle, χ =90◦) in the central (X,Y)-plane of the jet. The abscissa
is the Strouhal number, defined based on the nozzle height and the fully expanded
jet velocity, while the ordinate shows the sound pressure level (SPL) in decibels. The
presence of the screech tone is clearly identifiable with the distinct peaks corresponding
to the fundamental frequency and its harmonics. The amplitude of the first harmonic
is comparable to that of the fundamental. For comparison purposes, the spectra
corresponding to the nozzle design condition of Mj = 1.44 is also included in the
figure. As expected, the absence of screech tones at the design condition is evident in
the spectrum along with lower SPL levels of almost 10 dB for St < 0.8.

The variation of the Strouhal number corresponding to the fundamental screech
frequency, with the fully expanded Mach number is shown in figure 7. A slight but
clear jump in the Strouhal number is observed when the operating condition of
the jet is changed from the overexpanded to the underexpanded condition. Such a
jump is generally attributed to a change in the oscillatory mode of the jet (Raman
1998) – a shift from the varicose (symmetric) mode to the flapping (antisymmetric)
mode. However, examination of our PIV data indicates that the flapping mode,



132 M. B. Alkislar, A. Krothapalli and L. M. Lourenco

0.3

0.2

0.1

0

St
 =

 f
h/

U
j

1.2 1.3 1.4 1.5 1.6 1.7 1.8

Mj

Md = 1.44

Uc/Uj = 0.63

Uc/Uj = 0.50

Figure 7. Screech tone Strouhal number variation with fully expanded jet Mach number.
�, measured; —, Tam (1988); AR = 4.

similar to that seen in figure 1, remains dominant in both the overexpanded and
the underexpanded conditions. The most important parameters that determine the
frequency variation with the nozzle pressure ratio (NPR) are: the fully expanded
jet Mach number; the shock cell length; the convection velocities of the large-scale
disturbances in the shear layer; and the acoustic wave speed in the ambient medium
(Powell 1953). The solid line in the figure is obtained using Tam’s formula (Tam 1988);
with the measured convection velocities of large structures inserted in it. The phase-
resolved flow-field data were used to determine the convection speed of the large
structures present in the shear layer (§ 3.3). The velocity was found to be higher in the
overexpanded jet (Uc/Uj =0.63) than in the underexpanded jet (Uc/Uj =0.5). Upon
comparing the data with the prediction formula, it appears that the discontinuity in
the variation of St with Mj can be attributed to the different convection velocities of
the large structures in the overexpanded and the underexpanded conditions.

The screech tone amplitude variation with the fully expanded jet Mach number
is shown in figure 8. Guided by previous observations (Krothapalli et al. 1986;
Krothapalli & Strykowski 1996), a second-order polynomial is fitted through the data
for each of the two different operating regimes: overexpanded and underexpanded.
The parabolic nature of the screech intensity variation with Mach number, observed
earlier, is further confirmed by these measurements.

3.2. Global mean flow

The global jet behaviour is first examined through the detailed measurements
of the velocity distributions. The time-averaged velocity and vorticity fields are
a manifestation of the dynamics of the large-scale vortical structures and their
interactions with random turbulence.
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Figure 8. Variation of the screech tone amplitude with fully expanded jet Mach number.
�, measured; —, second-order fit.

3.2.1. Mean axial velocity distributions

The cross-plane mean velocity fields at different downstream locations, as shown in
figure 9, best capture the three-dimensional features of the jet evolution. The velocity
distributions are represented by the contours of the axial mean velocity magnitude
normalized by the fully expanded jet velocity (Uj = 495 m s−1). The axis-switching
phenomenon, commonly observed in low-speed jets (Krothapalli, Baganoff &
Karamcheti 1981), is vividly depicted here. While the long dimension of the jet
column is aligned with the major axis at the nozzle exit, at an axial distance of
25 h, it clearly aligns itself with the minor axis. An increased growth rate in the
minor axis plane produces a jet width at x/h = 25 that is about three times larger
than an ideally expanded jet. In this study, owing to the absence of self-excitation,
the ideally expanded jet grows normally and does not show the commonly observed
axis-switching phenomenon. It will be shown later that the axis switching observed
presently is related to the generation of strong streamwise vortices whose origins are
intimately connected to the dynamics of the coherent spanwise vortices.

The faster growth rate in the minor axis plane is further examined using the velocity
field measurements in the central (X, Y)-plane. The normalized axial mean velocity
magnitude contours for the screeching jet in the minor axis plane are shown in
figure 10. The distinctive character of an underexpanded jet with the classical shock
cell structure is clearly seen with six cells. Also shown in the figure is the supersonic
region of the jet, whose boundary is marked by a solid line drawn through the locus
of Mj = 1 points in the flow field. This region extends from the nozzle exit to about
x = 28 h. The cyclical variation of the velocity field is typical of underexpanded jets.
Considering stationary sources at the end of the shock cells and the phasing between
adjacent sources, Powell (1953) derived a formula for the screech tone frequency that
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is in reasonable agreement with the experimental results. The number of sources used
in his calculation depend upon the number of shock cells, which, in turn, is primarily
related to the strength of the underexpansion at the nozzle exit. The shock cell spacing
also plays a prominent role in the Powell or Tam formula for calculating the screech
frequency.

The variation of the axial mean velocity along the centreline is given in figure 11.
Also included in the figure is the velocity data derived from total and static pressure
measurements and assuming isentropic relations. In spite of rapid accelerations and
decelerations encountered by the seeding particles within the shock cells, the velocity
data obtained using PIV is in excellent agreement with that derived from pressure
measurements. Hence, the particle lag typically seen in shock-containing supersonic
flows is not of much concern in this experiment. Any deviations from the two sets
of data is mostly due to the isentropic assumption used in deriving the velocity from
pressure measurement in the downstream regions of the jet, where viscous effects
begin to influence the flow.
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The velocity shown in figure 11 is normalized with the fully expanded jet velocity
corresponding to M = 1.69 (i.e. Uj = 495 m s−1). The extent of the sonic region is also
noted in the figure. Usually, the decay of the centreline velocity of an incompressible
rectangular jet shows two distinct regions: the two-dimensional region, where the
centerline velocity Uc ∝ x−0.5 followed by an axisymmetric region where Uc ∝ x−1.
Because of rapid diffusion of the jet in the (X, Y)-plane, the extent of the two-
dimensional region is almost non-existent in the present case. Beyond about x = 22 h,
the centreline velocity seems to decay in a similar way to an axisymmetric jet.

The diffusion of the jet is quantified by the variation of the jet half-velocity widths,
with downstream distance as shown in figure 12. The half-velocity width is defined
as the distance from the centreline of the jet to the point where the mean velocity is
equal to half of the fully expanded jet velocity. The data are obtained from the mean
velocity field shown in figures 9 and 10. Also included in the figure are the data of an
ideally expanded jet at M = 1.44. Like incompressible jets, the ideally expanded jet
spreads linearly with downstream distance, albeit with a slower spreading rate. The
half-velocity width variation can be represented by

y0.5 = k(x − x0), (11)

where the slope k is calculated as 0.065 in the minor-axis plane and 0.058 in the
major-axis plane for an ideally expanded jet. The value of k is in accordance with
previous measurements of Krothapalli et al. (1986). Unlike incompressible jets, the
ideally expanded supersonic rectangular jet does not switch axes, as can be inferred
from the results shown in figure 12.

The minor-axis plane growth rate of the screeching jet shows two distinct slopes.
The faster growth of the jet (k = 0.11) in the region from x/h= 5 to x/h= 20 is
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due to the self-excitation of the shear layer which results in the organized vortical
structures seen in figure 1. A further increase in the growth rate (k = 0.33) seen
beyond x/h> 21 is due to the presence of strong streamwise vortices that are formed
from the three-dimensional deformation of the spanwise vortical structures, as will be
discussed in § 3.3. The cross-over point, Xc at x/h= 16 is in accordance (Xc/h ∼ 4 AR;
AR =nozzle aspect ratio) with the data of incompressible rectangular jets (Krothapalli
et al. 1981). The half-width in the major-axis plane does not vary significantly. Hence,
the jet dynamics is mostly governed by the flow evolution in the minor-axis plane
with vigorous mixing processes.

3.2.2. Mean transverse velocity distributions

Figure 13 shows the transverse velocity in the cross-planes (Y, Z) at three different
downstream locations. The uniformly scaled velocity vector fields are superimposed
with the contours of the normalized out-of-plane component of the vorticity (ωx =
∂w/∂y − ∂v/∂z). At x/h = 6 (figure 13a), most of the in-plane velocity vectors in
the jet column have a magnitude of about 10–50 m s−1 and point towards the centre.
A symmetric distribution of the transverse velocity field is quite evident. The ωx

contours show distinct vorticity concentrations, suggesting the presence of streamwise
vortices. Several studies have reported the presence of stationary streamwise vortices in
the mixing-layer region of supersonic jets (Krothapalli, Strykowski & King 1998 and
references therein). Novopashin & Perepelkin (1989) and Krothapalli et al. (1998) have
shown a strong correlation between disturbances originating in the nozzle boundary
layer and the presence of streamwise structure in the shear layer downstream. The
critical height of the disturbance necessary to trigger the formation of streamwise
vortices is quite small (δ∗/12, where δ∗ is the nozzle exit boundary-layer displacement
thickness). Hence, the unavoidable surface imperfections inside the nozzle will initiate
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the streamwise vortices shown in the figure. These vortices once formed, grow very
rapidly in the curved shear layer because of the instability Taylor–Görtler type seen
in figure 13(b).

Further downstream at x/h = 16 (figure 13c), strong concentrations of streamwise
vorticity accompanied by two counter-rotating vortex pairs dominate the flow field.
Also seen in figure 13(c) is a reminder of the corner vortices. While studying the
dynamics of an elliptic jet under a controlled longitudinal excitation to induce periodic
formation of vortical structures (‘rolls’), Husain & Hussain (1993) observed similar
streamwise structures and named them ‘ribs’. They have been deduced primarily
from numerical simulations guided by experimental results. In our experiment, the
spanwise structures are generated by the self-excitation and their three-dimensional
deformation leads to the fixed streamwise vortices. For the detailed ‘rib’ formation
mechanism, refer to Husain & Hussain (1993). These streamwise vortices will enhance
the transverse transport between the jet and the surrounding fluid there by promoting
the axis switching seen in rectangular jets. Indeed, the absence of axis switching in
ideally expanded rectangular jets (Krothapalli et al. 2003) is primarily due to lack of
coherent spanwise vortices. However, such a jet can be made to switch axes if it is
excited to induce periodic formation of coherent vortices like those seen in figure 1.
Similarly, screech suppression will result in a jet development similar to that of an
ideally expanded jet without the cross-over phenomenon.

3.3. Mean flow at constant phase

In this section, the velocity field data in the central minor-axis plane are used to
discuss the coherent structure properties. Although, the jet development becomes
three-dimensional beyond x/h=10, it is possible to extract meaningful coherent
structure dynamics in the central plane, as discussed below. Figures 14(a) and 14(b)
show the axial, 〈u〉 and transverse velocity 〈v〉 contours in the central minor-axis
plane at eight different phases during half of the screech cycle. The second half
of the screech cycle simply repeats the data after reflection of each figure in the
plane of symmetry (see figure 5). The axial velocity contours clearly show the shock
cell structure with a distinct demarcation between the high- and low-speed regions.
In addition, the shock cells oscillate, signifying the well-known character of the
flapping mode. These oscillations are small in amplitude at the jet exit and increase
with downstream distance. The corresponding transverse velocity contours, shown
in figure 14(b), show vividly the effect of the oscillatory nature of the flow in the
shear layer surrounding the shock cell structure. The magnitude of the v-component
velocity observed is about ± 0.15 Uj . The flapping mode of the jet is clearly depicted
by the asymmetric distribution of the transverse velocity contours for x/h > 7.5. The
shear layer surrounding the first few shock cells shows symmetric transverse velocity
contours, suggesting that a symmetric oscillatory mode is dominant. Using signals
from microphones located symmetrically on either side of a screeching rectangular jet,
Shih, Krothapalli & Gogineni (1992) observed the presence of simultaneous symmetric
and antisymmetric or flapping modes. However, the frequency of the oscillation as
measured by a near-field microphone in the present experiment corresponds only to
the flapping mode of the jet.

The large-scale vortical structures seen in figure 1 can be deduced by examining the
mean vorticity at constant phase, 〈ωz〉 = ∂〈v〉/∂x −∂〈u〉/∂y as shown in figure 15. The
vorticity contours seen in the figure are a clear indication of the presence of large-scale
coherent vortical structures. The vortical structures are highly three-dimensional in
nature and as a result, the vorticity contours appear to be fragmented. The source of



Structure of a screeching rectangular jet 141

〈ωz〉/hUj:

3

–0.10 –0.03 0.03 0.10 0.17–0.50

y
h

–1
–2

3

–3

0 5 15
x/h

0.23 0.30 0.37 0.43 0.50

2
1
0

–1
–2
–3

0°

22.5°3
2
1
0

–1
–2
–3

3
2
1
0

–1
–2
–3

3
2
1
0

–1
–2
–3

3
2
1
0

–1
–2
–3

3
2
1
0

–1
–2
–3

3
2
1
0

–1
–2
–3

2
1
0

10 20 25 30

157.5°

135°

112.5°

90°

67.5°

45°

–0.43 –0.37 –0.30 –0.23 –0.17

Figure 15. Phase-averaged vorticity corresponding to the velocity fields shown in figure 14.



142 M. B. Alkislar, A. Krothapalli and L. M. Lourenco

y
h

x/h

4

2

0

–2

–4

4 6 8 10 12 14 16 18

Figure 16. The coherent structure size determination through Ruu spatial correlation distri-
bution along the shear layer at u = 0.5 Uj , Mj = 1.69, phase 135◦. —, Ruu = 0.6; ---, 〈u〉/Uj .

three-dimensionality can be attributed to the generation of streamwise vortices in the
shear layers as discussed briefly in § 3.2.2. These spanwise vortices upon interacting
with the compression regions of the shock cell generate intense sound; hence, their
strength is likely to play a significant role in determining the sound intensity. It is
convenient to introduce the circulation Γ , as a measure of the large-scale vortex
strength, which can be determined from the value of the area integral:

ΓA(x0) =

∫∫
©
A

ωz dA. (12)

In the above relation, the boundary of the vortical regions need to be specified
correctly to yield a meaningful value for the circulation.

The spatial correlation, Ruu as defined by (13) is used to obtain the area representing
coherent regions of the vorticity.

Ruu(x0, x) =

Nm∑
i=1

u′′(x0) · u′′(x)

(
Nm∑
i=1

u′′(x0)
2

)1/2

·
(

Nm∑
i=1

u′′(x)2

)1/2
(13)

In (13), the two terms in the denominator are the r.m.s. values of the random
fluctuations of the axial velocity and Nm is the number of realizations at the given
phase m. A value of 1 for Ruu indicates the maximum possible correlation. Using the
instantaneous velocity fields obtained at a given phase of the screeching cycle, the
correlated regions of axial velocity are obtained as shown in figure 16. Although it is
logically a better choice, because of the variation in shape and location of vortices in
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every sample, Rωω did not yield smooth contours as compared to Ruu. If there were
more samples for each phase, then we expect that Rωω would yield similar results.

The results shown in figure 16, correspond to the velocity field at a typical phase
of 135◦. The positions x0 in (13), were chosen in the shear layer at discrete axial
locations where 〈u〉 =0.5 Uj . The Ruu contours, with magnitude ranging from 0.6 to
1, are shown in the figure at only selected positions to avoid overlapping in the figure.
The phase-averaged axial-velocity magnitude contours are also shown. In order to
observe the variation, the area is determined for each point where Ruu > 0.6 and plotted
in figure 17. Two downstream locations, x/h= 10.5 and x/h = 17.5, indicate large
areas suggestive of large-scale spatially coherent vortical structures. The circulation
calculations were then performed within the shaded regions shown in figure 16 using
equation (12). The magnitude of the circulation is appropriately normalized using
h and Uj, and it is plotted in figure 18. Also shown in the figure are data from a
jet operating away from the maximum screeching condition. Two distinct peaks can
be identified at axial distances of about 10.5 h and 17.5 h corresponding to the large
structures at the end of the third and fifth shock cells. The strength of the large
structure determined by its circulation magnitude is highest at the end of the third
shock cell and it corresponds to the location of the generation of the intense
sound. The circulation magnitudes of the structures at Mj = 1.74 show lower levels,
suggesting lower-strength vortical structures.

Since the locations and sizes of the vortical structures are identified, it is also
possible to use this information to calculate the convective speed of these structures.
The vorticity weighted average of the velocity field within the area as suggested by
Shih, Lourenco & Krothapalli (1995)

uc =
1

ΓA

∫∫
©
A

uωz dA (14)
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gives a value for the convection velocity of about 0.5 Uj , which is consistent with
the previous results obtained using phase-locked schlieren photography (Krothapalli
et al. 1986). The data show little variation with downstream distance (Alkislar
2001). In estimating the screech frequency, the convection velocities of the large-
scale disturbance are taken as a simple constant value and it seems to be borne out
from the present experimental results.

3.3.1. Three-dimensional development: cross-plane mean flow at constant phase

To elucidate the deformation of the rectangular jet, it is necessary to examine the
phase-averaged mean cross-flow field at different downstream locations. Figure 19
shows the uniformly scaled velocity vectors superimposed with the out-of-plane
component of the vorticity at three different phases within a screech tone period at
x/h= 12. The presence of the streamwise vortices often consisting of counter-rotating
pairs is seen in these pictures.

Using numerical simulation, Husain & Hussain (1993) have delineated the
generation of streamwise vorticity from the coherent spanwise structures. One of the
main features of their analysis is the formation of the ribs consisting of streamwise
vorticity from the deformation of the elliptic vortex structures similar to those shown
here. The strength of the streamwise structures is an order of magnitude lower
than that of the spanwise structures as determined by the vorticity magnitude. For
example, the normalized maximum vorticity magnitude in figure 15 corresponding to
the spanwise structures is about 0.5 as compared to that of 0.01 for the streamwise
structures seen in figure 19. The self-induced motions of these streamwise vortices
produce a strong transverse outward velocity, as shown in the figure, indicating the
outward movement of the jet fluid in the flapping plane and as a consequence the
major-axis side is pushed further outward. This action produces higher mixing as
suggested by an increase in the spreading rate of the jet in the minor-axis plane.
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3.4. Turbulence characteristics

Since, an important portion of the flow field is periodic in time, the fluctuation away
from a global mean q̄ consists of a contribution from the periodic large-scale motion
q̃ and a contribution q ′′ from the random fluctuations. When an ensemble of data is
considered at a fixed phase, the mean of this ensemble describes the periodic motion
q̃ , with the vortices stationary at an average location. Fluctuations from the mean
value at a fixed phase come from two main sources. In the following discussion, every
fluctuation from the mean at constant phase will be considered as random q ′′. The
fluctuations due to the variations in shape and location of the vortices in every sample
also contribute to this quantity; however, it is difficult to quantify the amount of
the contribution. Reynolds stresses here are associated with both the vortex variations
and the random fluctuations of velocity. These spatially resolved stresses at different
phases are used in the following discussion.

In figure 20, the three normalized components of the periodic Reynolds stress ũũ,
ṽṽ and ũṽ are shown in the central minor-axis plane at a typical phase of 135◦. The
measured area covers a region from the nozzle exit to 32.5h in the axial direction,
and −3.5 h to 3.5 h in the transverse direction. Recognizing that the flow is highly
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three-dimensional, the central plane was chosen to examine the turbulence
characteristics, being the most representative of the flow field. The stresses are shown
in contour plots with their magnitude represented by the grey scale and the solid
and dashed lines denote the positive and negative values, respectively. Included in
the figure are the normalized mean velocity contours depicting the boundaries of the
shock cells and the shear layer. The locations of the large-scale vortical structures,
as obtained from the Ruu contours are also included in the figure. The normal stress
values show a strong symmetry with respect to the jet centreline. The periodic motion
is primarily a consequence of the local transverse motion of the shock cells with
respect to the global mean, which generates peaks in ũũ on either side of the shock
cell structure. Typical normalized peak values in the shear layer are found to be about
0.02. The maximum normalized value of ũũ is found to be 0.025 at x = 20 h and
y = 1 h, which corresponds to the location where the shock cell structure terminates.
The other direct result of oscillating shock cells is the sequence of ṽṽ peaks along
the centreline of the jet with magnitudes comparable to that of ũũ. The normalized
maximum value for the transverse periodic normal stress is observed at x = 18.5 h

with a magnitude of 0.027. The corresponding r.m.s. velocities are about 15% of the
mean jet exit velocity. As expected, the periodic shear stress ũṽ distribution exhibits
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asymmetry about the centreline, with its maximum normalized value being 0.015 at
x = 18.5h. The magnitudes of these periodic stresses decrease rapidly after about 20 h.

The quantity ũũ is found to be confined mostly to the high-speed side of the shear
layer and it is nearly zero at the centre of the jet. However, the contours of ṽṽ are
concentrated at the centre of the jet owing to the flapping motion of the shock cells.
Unlike in low-speed jet and wake flows (Husain & Zaman 1981; Cantwell & Coles
1983) the periodic shear stress contours do not show alternating character (positive
along the top shear layer and negative along the bottom shear layer) except in the far
downstream locations of the jet (x/h> 20). Since ũũ and ũṽ contours are confined
mostly to the high-speed side of the shear layer, it is suggested that the periodic
stresses are largely a consequence of the flapping motion of the shock cells. The
arrangement of the stress contours appears to coincide with the large-scale coherent
structure locations with the vortex centres typically aligned with the half-velocity
points in the shear layer.

Figure 21 shows the random components of the Reynolds stresses 〈u′′u′′〉, 〈v′′v′′〉
and 〈u′′v′′〉 corresponding to conditions in figure 20. The fluctuation levels due to
random turbulence are comparable to the fluctuation levels due to large-scale periodic
motions. However, the highest values of the random components are measured at the
end of the potential core downstream of about 16 h, where the shear layers on either
side of the shock cells merge. The quantities 〈u′′u′′〉, 〈v′′v′′〉 and 〈u′′v′′〉 have normalized
maximum values of 0.034, 0.015 and 0.012, respectively. Unlike the periodic Reynolds
stresses, the random components are widely spread in the mixing region downstream
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of the end of the shock cells. The values of these stresses, although small in the
shear layers, appear both in the high- and low-speed sides. This is in contrast to the
periodic Reynolds stresses, ũũ and ũṽ, which are confined only to the high-speed side
of the shear layer. Since the random stresses have nearly zero values within the shock
cell structure, any phase jitter arising from the irregularity of the large-scale motions
in the jet has not seriously affected the measurements of Reynolds stresses due to
random turbulence.

On close examination of the vorticity field, it appears that the peak location of the
random Reynolds stresses is coincident with the positions of the large-scale vortices. A
vivid presentation of this observation is seen in figure 22, where the expanded velocity
field at the end of the third shock cell is superimposed with the 〈u′′u′′〉 contours along
with the streamline pattern at phase 135◦. The convective velocity of the vortical
structure is subtracted from the whole flow field. The shock cell pattern is shown in
the inserted figure with the coloured contours of the axial velocity magnitude. The
vortical structure is captured at the end of third shock cell by the Ruu contours shown
in figure 16. Shown in this fashion, it is clear that the vortex location coincides with
the peak in the random normal stress. Similar observations were made by Husain &
Zaman (1981) at very low-speed jet flows.
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The global mean periodic and random Reynolds stress components (e.g. ũũ and
〈u′′u′′〉), averaged over one screech cycle, show results that are quite similar to those
seen in figures 20 and 21 (Alkislar 2001). For the sake of brevity, they are not
included here. However, the global mean total Reynolds stress components (e.g. u′u′)
are given in figure 23. These quantities are the conventional stresses obtained by
classical Reynolds averaging (given that the flow is treated as statistically stationary).
They can be calculated by simply adding the two components of the global mean
stresses (e.g. u′u′ = ũũ + 〈u′′u′′〉). The u′u′ contours show that the streamwise normal
stresses assume higher values at the high-speed side of the shear layer with local
maximums at the shock cell ends adjacent to the shock cell boundary. At 19 h a value
of 0.021 is observed corresponding to a normalized turbulence intensity of 0.145.

The transverse total Reynolds normal stress shows the dominant character of the
periodic components over the entire flow field. The maximum level is achieved at 16 h

with a value of 0.019. The corresponding turbulence intensity for the transverse
velocity fluctuations is 0.14, which is comparable to the streamwise turbulence
intensity. Finally, the global mean total Reynolds shear stress is shown in figure 23(c).
The combined effect of turbulent and periodic shear stresses is felt mostly in the
region where the merging of the two shear layers occurs. A peak value of 0.0086 is
observed at 20.5h, after which the fluctuations begin to reduce, as will be shown in
the distribution of centreline turbulence intensities.

The variation of u′u′ along the centreline is given in figure 24. The data clearly
shows the rapid (exponential) increase of the fluctuations along the jet centreline
as represented by the solid curve, starting with a relatively low value of 0.0001
corresponding to turbulence intensity of 0.01, to reach a maximum value of about
0.015 at 23 h. Also included in the figure are the corresponding periodic and
random components. Consistent with previous observations discussed above, the



Structure of a screeching rectangular jet 151

x/h

v�
v�

/U
2 j

0 5 10 15 20 25 30 35

0.010

0.020

0.015

0.005

Figure 25. The variation of transverse mean Reynolds normal stress along the centreline.
�, ṽṽ/U 2
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random fluctuations are dominant over the periodic fluctuations along the centreline,
suggesting that there is no significant periodic movement of shock cells in the axial
direction.

In figure 25, the variation in v′v′ along the centreline is shown. In contrast to u′u′,
the variation in the transverse global mean Reynolds normal stress is dominated
mostly by the periodic fluctuation up to the end of the potential core. The maximum
value is observed at the location of the fifth shock cell (x/h= 15). At about
x/h = 20, the magnitude of the periodic component decreases precipitously and the
random fluctuations begin to increase. The modulation of the transverse fluctuation
intensities within the shock cell is very significant (within the fifth shock cell, the
fluctuation intensity changes between the values of 0.035 and 0.14), indicative of
the strong flapping motion of the jet column. The sudden breakdown of the turbulence
energy associated with the periodic component at x/h= 20, is clearly depicted in the
distribution of the normal stresses in the shear layer at half-velocity points as shown
in figures 26 and 27. In the shear layer, the fluctuations of the random component
are of the same order of magnitude as the periodic component. At the end of the
supersonic core of the jet, the turbulence intensities begin to decrease as shown in the
figure. Beyond x/h> 20, the jet is expected to show characteristics similar to that of
a subsonic jet.

The turbulence measurements discussed in this section clearly show that a significant
part (50%) of the turbulent energy is produced by the periodic large-scale structures
in the noise-producing region of the supersonic jet (0 < x/h< 20). The maximum
values for the periodic and random components of the Reynolds stress seem to be
aligned with concentrations of the coherent vorticity, suggesting that the production
of turbulent kinetic energy is associated with the unsteady flow generated by the large
periodic structures. Suppression of the mechanism that generates these large structures
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may result in turbulence suppression which leads to far-field noise reductions. Indeed,
our attempts to accomplish this task with microjet air/water injection show promising
results (Krothapalli, Greska & Arakeri 2002).
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4. Conclusions
The three-dimensional flow characteristics of a screeching rectangular jet are

explored using a relatively new experimental technique, stereoscopic particle image
velocimetry. The three-dimensional evolution of the rectangular jet with its distinctive
character of the cross-over phenomenon (switching of the jet major and minor axes) is
captured. The absence of the cross-over phenomenon in ideally expanded rectangular
and elliptic jets, that is so prevalent in low-speed jets, was somewhat puzzling. The
present experimental results show that the three-dimensional deformation of the
large-scale spanwise coherent vortical structures results in strong streamwise vortices
that are responsible for the axis-switching phenomenon. The periodic formation of
the large-scale spanwise structures in a screeching jet is due to self-excitation. It is
believed that such structures can be generated in an ideally expanded jet if a controlled
longitudinal excitation is imposed at the nozzle exit. Husain & Hussain (1993), using
experimental and numerical simulations of low-speed elliptic jets, admirably describe
the mechanism for the generation of the streamwise vortices.

The dynamics of the coherent eddies are studied via the temporal evolution of their
circulation. At the maximum screeching condition, strong coherent vortical structures
are found to dominate the shear layer in the region of the screech sound generation.
The flow-field measurements, in conjunction with the schlieren pictures, suggest that
the birth of the acoustic wave associated with the screech tone results from relatively
high turbulent fluctuations in the shear layer at the end of a shock cell. These
fluctuations are due to the interaction of intense concentration of vorticity associated
with a large-scale coherent structure with the shock cell. Accordingly, at conditions
where the screech is weaker, such intense vortical structures are not observed. It is
concluded that the presence of coherent vorticity of significant strength, in addition
to the shock cell strength, is largely responsible for determining the intensity of the
screech. Reduction in either of these parameters will result in reductions in screech
amplitude.

Using the well-known triple decomposition of the velocity, it is found that the
turbulent energy for x/h � 20, consists of contributions from both the periodic large-
scale and chaotic small-scale turbulence. The turbulence energy associated with the
periodic motion of the jet drops precipitously at the location where the streamwise
vortical structures become prominent.

The authors are grateful to Boeing Corporation and NASA Ames Research Center
for supporting the work reported here. Dr William Bower of Boeing continues to be
a source of encouragement. Dr Charles A. Smith and Dr James C. Ross of Ames
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